

Negative and fractional powers

mc-indices2-2009-1

In many calculations you will need to use negative and fractional powers. These are explained on this leaflet.

Negative powers

Negative powers are interpreted as follows:

$$a^{-m} = \frac{1}{a^m}$$
 or equivalently $a^m = \frac{1}{a^{-m}}$

Examples

$$3^{-2} = \frac{1}{3^2}, \qquad \frac{1}{5^{-2}} = 5^2, \qquad x^{-1} = \frac{1}{x^1} = \frac{1}{x}, \qquad x^{-2} = \frac{1}{x^2}, \qquad 2^{-5} = \frac{1}{2^5}$$

Exercises

1. Write the following using only positive powers:

(a)
$$\frac{1}{x^{-6}}$$
, (b) x^{-12} , (c) t^{-3} , (d) $\frac{1}{4^{-3}}$, (e) 5^{-17}

2. Without using a calculator evaluate (a) 2^{-3} , (b) 3^{-2} , (c) $\frac{1}{4^{-2}}$, (d) $\frac{1}{2^{-5}}$, (e) $\frac{1}{4^{-3}}$.

Fractional powers

To understand fractional powers you first need to have an understanding of roots, and in particular square roots and cube roots.

When a number is raised to a fractional power this is interpreted as follows:

$$a^{1/n} = \sqrt[n]{a}$$

So,

$a^{1/2}$	is a square root of a
$a^{1/3}$	is the cube root of \boldsymbol{a}
$a^{1/4}$	is a fourth root of a

Examples

 $\begin{aligned} 3^{1/2} &= \sqrt[2]{3}, \qquad 27^{1/3} = \sqrt[3]{27} \quad \text{or} \quad 3, \qquad 32^{1/5} = \sqrt[5]{32} = 2, \\ 64^{1/3} &= \sqrt[3]{64} = 4, \qquad 81^{1/4} = \sqrt[4]{81} = 3 \end{aligned}$

Fractional powers are useful when we need to calculate roots using a scientific calculator. For example to find $\sqrt[7]{38}$ we rewrite this as $38^{1/7}$ which can be evaluated using a scientific calculator. You may need to check your calculator manual to find the precise way of doing this, probably with the buttons x^y or $x^{1/y}$.

Check that you are using your calculator correctly by confirming that

$$38^{1/7} = 1.6814$$
 (4 dp)

More generally we can write:

 $a^{m/n} = \sqrt[n]{a^m}$ or equivalently $\left(\sqrt[n]{a}\right)^m$

Examples

$$8^{2/3} = (\sqrt[3]{8})^2 = 2^2 = 4$$
, and $32^{3/5} = (\sqrt[5]{32})^3 = 2^3 = 8$

Alternatively,

$$8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$
, and $32^{3/5} = \sqrt[5]{32^3} = \sqrt[5]{32768} = 8$

Exercises

3. Use a calculator to find, correct to 4 decimal places, a) $\sqrt[5]{96}$, b) $\sqrt[4]{32}$.

4. Without using a calculator, evaluate a) $4^{3/2}$, b) $27^{2/3}$.

5. Use the rule $\frac{a^n}{a^m} = a^{n-m}$ with n = 0 to prove that $a^{-m} = \frac{1}{a^m}$.

6. Each of the following expressions can be written as a^n . Determine n in each case:

(a)
$$\frac{1}{a^5}$$
 (b) $\sqrt{a} \times \frac{1}{a^2}$, (c) 1 (d) $\frac{1}{\sqrt{a}}$.

Answers

1. (a)
$$x^{6}$$
, (b) $\frac{1}{x^{12}}$, (c) $\frac{1}{t^{3}}$, (d) 4^{3} , (e) $\frac{1}{5^{17}}$.
2. (a) $2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}$, (b) $\frac{1}{9}$, (c) 16, (d) 32, (e) 64.
3. a) 2.4915, b) 2.3784. 4. a) $4^{3/2} = 8$, b) $27^{2/3} = 9$.
6. (a) -5 (b) $-\frac{3}{2}$ (c) 0 (d) $-\frac{1}{2}$.

www.mathcentre.ac.uk

