mathcentre

Negative and fractional powers

mc-indices2-2009-1
In many calculations you will need to use negative and fractional powers. These are explained on this leaflet.

Negative powers

Negative powers are interpreted as follows:

$$
a^{-m}=\frac{1}{a^{m}} \quad \text { or equivalently } \quad a^{m}=\frac{1}{a^{-m}}
$$

Examples

$$
3^{-2}=\frac{1}{3^{2}}, \quad \frac{1}{5^{-2}}=5^{2}, \quad x^{-1}=\frac{1}{x^{1}}=\frac{1}{x}, \quad x^{-2}=\frac{1}{x^{2}}, \quad 2^{-5}=\frac{1}{2^{5}}
$$

Exercises

1. Write the following using only positive powers:
(a) $\frac{1}{x^{-6}}$,
(b) x^{-12},
(c) t^{-3},
(d) $\frac{1}{4^{-3}}$,
(e) 5^{-17}.
2. Without using a calculator evaluate (a) 2^{-3},
(b) 3^{-2},
(c) $\frac{1}{4^{-2}}$,
(d) $\frac{1}{2^{-5}}$,
(e) $\frac{1}{4^{-3}}$.

Fractional powers

To understand fractional powers you first need to have an understanding of roots, and in particular square roots and cube roots.

When a number is raised to a fractional power this is interpreted as follows:

$$
a^{1 / n}=\sqrt[n]{a}
$$

So,

$$
\begin{array}{ll}
a^{1 / 2} & \text { is a square root of } a \\
a^{1 / 3} & \text { is the cube root of } a \\
a^{1 / 4} & \text { is a fourth root of } a
\end{array}
$$

Examples

$$
\begin{gathered}
3^{1 / 2}=\sqrt[2]{3}, \quad 27^{1 / 3}=\sqrt[3]{27} \quad \text { or } 3, \quad 32^{1 / 5}=\sqrt[5]{32}=2, \\
64^{1 / 3}=\sqrt[3]{64}=4, \quad 81^{1 / 4}=\sqrt[4]{81}=3
\end{gathered}
$$

Fractional powers are useful when we need to calculate roots using a scientific calculator. For example to find $\sqrt[7]{38}$ we rewrite this as $38^{1 / 7}$ which can be evaluated using a scientific calculator. You may need to check your calculator manual to find the precise way of doing this, probably with the buttons x^{y} or $x^{1 / y}$.

Check that you are using your calculator correctly by confirming that

$$
38^{1 / 7}=1.6814 \quad(4 \mathrm{dp})
$$

More generally we can write:

$$
a^{m / n}=\sqrt[n]{a^{m}} \text { or equivalently }(\sqrt[n]{a})^{m}
$$

Examples

$$
8^{2 / 3}=(\sqrt[3]{8})^{2}=2^{2}=4, \quad \text { and } \quad 32^{3 / 5}=(\sqrt[5]{32})^{3}=2^{3}=8
$$

Alternatively,

$$
8^{2 / 3}=\sqrt[3]{8^{2}}=\sqrt[3]{64}=4, \quad \text { and } \quad 32^{3 / 5}=\sqrt[5]{32^{3}}=\sqrt[5]{32768}=8
$$

Exercises

3. Use a calculator to find, correct to 4 decimal places, a) $\sqrt[5]{96}$, b) $\sqrt[4]{32}$.
4. Without using a calculator, evaluate a) $4^{3 / 2}$,
b) $27^{2 / 3}$.
5. Use the rule $\frac{a^{n}}{a^{m}}=a^{n-m}$ with $n=0$ to prove that $a^{-m}=\frac{1}{a^{m}}$.
6. Each of the following expressions can be written as a^{n}. Determine n in each case:
(a) $\frac{1}{a^{5}}$
(b) $\sqrt{a} \times \frac{1}{a^{2}}$,
(c) 1
(d) $\frac{1}{\sqrt{a}}$.

Answers

1. (a) x^{6},
(b) $\frac{1}{x^{12}}$,
(c) $\frac{1}{t^{3}}$,
(d) 4^{3},
(e) $\frac{1}{5^{17}}$.
2. (a) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$,
(b) $\frac{1}{9}$,
(c) 16 ,
(d) 32 ,
(e) 64 .
3. a) 2.4915 ,
b) 2.3784 .
4. a) $4^{3 / 2}=8$,
b) $27^{2 / 3}=9$.
5. (a) -5
(b) $-\frac{3}{2}$
(c) 0
(d) $-\frac{1}{2}$.
